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Optical Matrix Inverter for Phased Array Radar

L. Introduction

The purpose of this study is to investigate new approaches to process the data
collected by phased array antennas to achieve interference canceling. This data processing
need to be performed with severe time constraints. This study was motivated by the fact
that optics is capable of processing data in parallel with very high speeds. The issue we
investigated in this study was the applicability of the optical algebraic processors to such
problems.  The advantages gained by using optical systems over their electronic
counterparts are investigated. The limitations of the optical system and their effect on the
interference canceling was studied. In the course of this contract we investigated the issues
Just listed and came to valid and encouraging conclusions which are outlined in the final

section of this report.

II. Interference Canceling

Phased array antennas are used both in radar and communication systems among
many other applications. These systems are used to detect a desired signal. In practical
systems the desired signal will not be the only signal present. Thermal noise, other friendly
and uniriendly interfcrence signals usually are present in surrounding environment. It is
common that the jamming signals be stronger than the desired signal, which presents a
serious problem in detecting the desired signal. It was suggested, to resolve this problem,
that if we can change the antenna pattern in such a way that we introduce a null along the
direction of the jammer, it will cancel it without effecting the ability of detecting the
desired signal [1-5]. This change of the antenna pattern can be achieved by adapting the
weights of the individual sensors to the environment. This adaptation process needs to be

done using the detected signals. This is the basic idea behind the adaptive phased array




antenna systems. In the following section we show how this adaptation processes can be

achieved.

2.1 Adaptive Phased Array Antennas

In adaptive phased arrays the incoming signal is detected by an array of sensors.
The detected signal is a combination of the target signal plus interference and noise signals.
The system is adjusted in such a way to suppress the interference signals reception without
affecting the desired signal.

In this section we consider the two general cases of interference canceling: first by
assuming that the interference signal direction is known; secondly by assuming no a prior

information is known about the interference signal.

A. Interference Signal Direction is Known
When the interference signal direction is known the weights wyi’s of the array can be
chosen to suppress the interference signal. Let the system shown in Fig. 1(a) be used to
demonstrate this adaptation technique. The output signal of the array s(t) is given by !
s(t) = P[(w, + Wq) sin W t + (Wotw,) sin(w t — 0—%)]
+ 1wy sin(wt — 0) + Wy sin(w t — 0 — g)
+ W sin(wot + 0) + wy sin(w t + 0——%)] , (1)
where
P = the pilot signal,
[ = the interference signal, and
0 = the phase shift
0= 2{’—4 siny. (2)
To cancel the interference signal and to make the signal s(t) equal to the pilot

signal, we need to solve the following system of linear equations for the weights w.'s:
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Basic adaptive array system with (a) signal and noise directions are known,
and (b) no a priori information is assumed.




w1 + w3 =
w2 + w4

(3)

(w

1
=0

1+ w3) COSO—(WQ—W4) sind =0
(wo + w,) C

0sf + (w, —wy) sinf =0 .
The size of this system of linear equations depends on the number of sensors in the
array. The number of jammers can make the system under or overdetermined, which are

both time consuming algebra problems.

B. No ¢ priori Information is Known

This is the most general case where we assume no information about jammers. The
system used in this case is shown in Fig. 1(b). Each of the n sensors receives a signal x;(t)
which is in turn multiplied by a variable weight w;. The output signal s(t) is compared
with the desired signal d(t) and their difference, the error signal €(t), is used to determine

the value of wi’s. The output of the array is

n
)= x(0) w, (4)
io1
or
s(t) = Wl % (5)
where
W, xl(t)
#=|%i lanaz =%
W x (t)
) n (6)
For digital sampled data
s(i) = w' () (7)

and




The optimum value of the weights, w.’s, is the one reduces €(j) to zero or at least minimize
it.
For N samples of data the optimum weights satisfy the following set of systems of

linear equations:
(i) =d(1) (9)

The N sets of equations have n unknowns, and usually N >> n, and are inconsistent

and over specified. The optimization problem can be rewritten as

R
Wopt = Rxx fxd (10)
where
R = E{xx'}, (11)
and
t g = E{xd}. (12)

The matrix R__ is called the covariance matrix, where E{-} is the ensemble average.

Many algorithms are introduced [2] to solve for the weights in Eq. (10). Some of
the popular algorithms are the least mean square (LMS), and the direct matrix inversion
(DMI).

We'll briefly mention the DMI algorithm since it leads to the algorithm introduced
in this paper. Eq. (10) cannot be determined exactly using a limited number of samples of
the input data. For practical consideration a small number of samples is detected to be

used in determining w. The estimated value of Eq.(10) can be given by
(13)
where

Rxx 1s the sample covariance matrix, and ?\(d is the sample cross—correlation vector, and

are given by




K
Ry=g Y 202 () (14)

and

=% 2, 20 d0) (15)

and K is the number of samples. The DMI algorithm determines the inverse of the sample

covariance matrix f{“, then from Eq. (13) evaluates v.

HOI.  Optical Algebraic Processors

Solving systems of linear equations and determining the eigenvalue and the
eigenvectors are only a few of the challenging problems faced by the numerical
computations. The problem of determining the weights for the adaptive phased array as
given by Eq. (13) is solving a system of linear equations. In this case the size of the
matrices involved are very large. Solving a system of linear equations for large matrices is
time consuming because of the computation complexity. Digital computers revolutionized
this field, because of the fast execution of number crunching operations. But still solving a
problem with a matrix of 1000x1000 elements takes few seconds, which by our standards, is
a long time.

Optics by its inherent parallelism and speed seems to present a natural choice for
solving this class of problems. Analog optics is very attractive for optical information
processing and computing. As shown in Fig. 2, in the vector—matrix multiplier all the
clements of the vector are processed in the same time. At almost the same time we write X
we do read b. If the optical path length between the input and output planes is 3cm, the
whole operation of the vector—matrix operation can be done in less than 100psec. For
N=1000, the number of operations needed to perform Ax—b is 0(106). Hence, speed of the

—16

processor is 0(107 ) sec/operation. This illustrative example gives a sense of the speed of
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the analog optics in performing linear algebra operations. Unfortunately this high speed of
operations is combined with a low accuracy, which is the nature of the all analog systems.

Analog optics is very fast but inaccurate. On the other hand, digital electronics is
very accurate but not as fast as analog optics. Utilizing the advantages of both analog
optics and digital electronics can be achieved in a "compromise" hybrid system. -\ system
that slows down the processor speed but in return increases the accuracy substantially.

The bimodal optical computer (BOC) introduced by Caulfield. et. al. {6] is based on
this idea of combining the speed of analog optics and the accuracy of digital electronics.

The adaptation problem for the weights W introduced in Section II, can be rewritten

in the following form, {from Eq. (13)

Rxx W= fxd , (16)
which can be written as
At =D | (17)
where A=R ,
XX
=W,
a,nd b = f.‘(d .

Eq. (16) is a system of linear equations can be solved using the bimodal optical computer.
Consider an NxN matrix A, and Nx1 vectors x and b. Let \ and b are given, and
we would like to solve the system of equations given by Eq. (17) for the vector x. This can
be solved by analog optics techniques. The relaxation methed introduced by Cheng an
Caulfield [7] can be used to solve Eq. (17) for x. Consider the hybrid system shown in Fig.
3. Assume an initial value for the solution x and write it using the LED’s. Then the
vector X is multiplied by the matrix A. The resultant vector \ is compared with b by a
difference amplifier. This difference is fed back to correct x. This process of multiplying

the new value of x with A and comparing y to b continues till the difference between y and




b becomes zer:  Then the value of » will convcrge to the solution of Eq. (17). For a
pusitive definite matrix A always a convergence to the solution exists. To achieve a
nonnegative definite matrix, we can multiply Eq. (17) from the left by the Hermitian Al of
A, The new AMA i non—nonnegative definite. We will show later that the increase in
condition number this causes need not affect convergence and that we can solve the
cquations even if ATA is singular.

This method in solving a system of linear equations is very rapid. Its speed is
limited only by the speed of the electro—optics devices and on the feedback electronics,
which can be in the psec range.

Let us consider now the accuracy of the system. In writing both A and x on the
optical mask (it can be a photographic film or a spatial light modulator) and the LED
array, a considerable amount of error will exist because of the nature of these analog
devices.  Also reading the vector b on the photodiode array cannot be done exactly.
Therefore, the system in Fig. 3 did not solve the system in Eq. (17) but instead the system
given by
=b

A (18)

0%0 = Yo
where the subscript zeros indicate inaccuracies in the optics and electronics. The solution
§0 of Eq. (18) can be refined to get the vector X using the following algorithm:

(a)  Solve the system in Eq.(18) using the analog optical processor for ;(0'

(b) Store the solutions ;<0 to a high accuracy with the digital processor. Use a

dedicated digital processor to calculate the residue
;(O
(c) Use the optical analog processor to solve the new system of linear equations

r=b-Axy=Alx—x)) = A Ax. (19)

A0§0 =T, (20)

where y = s Ax and s is a "radix," or scale factor, chosen to good use of the dynamic range
v b v

of the system,
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Figure 4 The bimodal optical computer used in solving a system of linear equations.




(d) Use the digital processor to refine the solution \O for ;clz

-

X, = ;D + Ax (21)

1

If the refined solution x, is accurate enough, terminate the iterations. Otherwise, return to

1
(b), (¢), and (d) for a more refined solution. This system which implements the algorithm
outlined above is shown in Fig. 3.

The convergence and speed of the solution for the system of linear equations is
studied and reported by Abushagur and Caulfield [8]. The convergence of the iterative
solution depends on two main factors. First, is the condition number of the matrix
.»\0,;((‘»\0)_ The smaller condition number the faster it will converge. Secondly, on the
error involved in reading and writing of A, x and b using the electro—optic devices. The
higher the accuracy in representing these parameters the faster the convergence will occur.

The condition number of the matrix is a critical factor in the convergence of the
solution. In representing the matrix A by an optical mask, an error will be added to it.
The inaccuracies in representing the matrix A changes the values of the matrix elements
aij’s. These variations in the matrix elements change the condition number of the matrix.
Let us represent the mask’s matrix AO in the following form

AO = A + E, (22)
where E is an error matrix. The error matrix E is generated using Gaussian statistics, with
standard deviation, o

The effect of the error matrix E on the condition number of the optical mask’s
matrix is demonstrated in Fig. 4. In Fig. 4(a), a matrix A with condition number of 60 is
considered. The coefficients of the matrix are normalized such that the maximum 3; is
equal to the unity. The condition number of AO plotted as a function of the standard
deviation of the error matrix, Ig- The condition number of the matrix AO tends to

decrease by the increase of Tp» especially for large O In Fig. 4(b) a matrix A with

condition number 300 (an ill—onditioned), the condition number decreased significantly
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throughout the range considered of Ty Thus, if A is an ill—conditioned matrix, the mask’s
matrix can very well be a better conditioned one. Of course, in this case when we solve the
system give in Eq. (18) ‘"\O will be different from the original A. Hcnce, we solve a better
conditioned system for the approximate sclution ;O’ and then we refine using the algorithm
outlined above.

Now, let us consider the effect of the condition number on the convergence of the
solution. The condition number is the determining factor in the accuracy of the solution of
the system of equations.

Hence, for a matrix with a large condition number, the first iteration of the solution
with a limited accuracy computer will be highly inaccurate. This leads to the result that
the larger the condition number the larger number of iterations needed for the convergence
of the solution. To demonstrate this result, we ran a computer simulation of our bimodal
optical computer. The simulated BOC is used to solve a system of linear equation with a
16 bit resolution. The matrix A, was generated randomly using Gaussian statistics. An
error matrix E, with an error of 1% of that of the maximum coefficient of the matrix A,
and then added to A to generate A as in Eq. (22). An error of 1% also used in reading x
and in writing bO' In each case we computed the condition numbers of the matrix and its
mask. The number of iterations required for convergence of the solution to the specified
accuracy was determined for each case. The iterations were terminated if they exceeded 25
or ||;(k+1)||/[|;(k)]]> 1, which is the condition for the solution divergence. The number of
iterations, NI’ required for convergence of the solution with 16 bit accuracy is plotted as a
function of the condition number x(Aj) in Fig. 5. In these experiments it is clear that the
number of iteration increases with the increase of the condition number.

The condition number, as shown above, is one of the determining factors for the
number of iteration required for convergence of the solution of the system of equations. It
is also shown in Fig. 4 that the condition number of the optical mask’s matrix decreases by

the increase of the standard deviation of the error matrix L.
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The influence of the standard deviation of the error matrix, E, on the convergence of
the solution is shown in Fig. 6. The number of iteration, Ny increases with the increase of
.- This decrease in the convergence rate is expected because for large o:’s the matrix AO
is quict different from A. The important result demonstrated in Fig. 6 is that even with an
°rror up to 50% in writing the matrix A in the optical mask, convergence is still achieved.

The result is very important in realizing this algorithm by analog optics. In
representing the matrix A by an optical mask always an error will exist. An error of 1% is
quite hard to achieve in this representation using our current technology. In the present
state—of—the—art technology an accuracy of 2 to 3% in writing the matrix A is within our
reach. This accuracy does not sacrifice the convergence of the solution.

The above results show that the Bimodal Optical Computer can solve a system of
linear equations with very high accuracy. This accuracy can be achieved using I/0 devices
that have limited accuracy. The digital computes are capable of achieving high accuracy
solution for all the cases considered above. So, what is the real advantage of introducing
this new class of computers? Speed, is what we are after. An analysis of the speed of the
BOC shows that for it to be more faster than the digital computer the following condition
shonld be satisfied {8!

Ap Ap>>1, (23)
where

2IN°/6) + N?(1-K — NK]

A = , (24)
b K

Ar=Tp /Ty (25)

K =1/l (26)

N = the size of the matrix | (27)
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[, = the number of iterations needed for the convergence of the solution to the specified
accuracy using the BOC,

[D = the number of iterations needed for the convergence of the solution using the digital
computer,

TDI = the time required to perform one digital operation, and

’I“\‘1 = the time required to solve A.x, = BU using the analog processor.

970

The speed advantage depends on the size of the matrix, N, and the speed of the

electronic and electro—aptic devices used in the BOC. The factor Ap is plotted in Fig. 7 as

a function of N, for a set of values of K. It is quict clear that "\p is very large 0(105) for
moderately large values of N.

The values of TD1 and TN\1 can be compared using approximate values using

current data.

Tpy 2 psec (27)

TDI ~ 1 psec for a microcomputer, (28)
and

Tpy > 1 nsec fora CRAY2. (29)

The factor Ap AI is plotted in Fig. 8 as a function of N using the data given by Eqgs.
(27) and (29). The advantage in speed is very large and the condition of eq. (23) is
satisfied for N>50.

This advantage in speed of the BOC over the existing digital computer makes it a

very attractive computing machine, and shows the potential of this class of hybrid systems.

IV.  Impelmenting the BOC

The BOC was built in our laboratory has three main parts as shown in Fig. 3. The
optical system, the electronic circuit, and the digital processor. The optical system consists
of the fully parallel matrix—vector multiplier. Light from the LED’s representing X

components are spread vertically by planner waveguides onto the columns of the matrix
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mask. The tiansmitted light is summed row wise by using another set of planner
waveguides and detected by photodiodes which represent the output vector b.

The electronic circuit acts as a feedback loop to correct for the input light of the
LED's, until a sclution is reached. The solution x will then be read and stored by the
digital processor. Figure 8 shows the electronic circuit used for the feedback loop.

The A/D and D/A conversion from and to the electronic circuit are performed by
the digital processor.

In this section we present the experimental results for solving a system of linear
equations Ax = b using the BOC, where x\,E, and x are all positive.

The Log of the error and that of the residue are plotted versus the number of
iterations. The error and the residue are defined as,

Error = [|(x—x")[|/||x| (30)

Residue=/| 1| (31)

th

Where .||, is the Enclidean norm, x is the exact solution, K is the k iteration

k 1s the kth iteration residue.

solution, and r
Since we are dealing only with positive numbers in this paper, we used the absolute

value of T to solve Eq.(2), then we set:

A1) _3n) gz (32)
when all the components of T are positive. And

wntl) _ o) 3 (33)
if all the components of r are negative. We reject the iteration when the components of r

have different signs and take the previous one. By rejecting some iterations we are actually
rejecting sume corrections which will slow the convergence process.
In all experiments performed, the iteration process is stopped when a 16 bit

accuracy is reached. Fig 9 shows that the BOC started almost 30% error and it needed 6







iterations to converge to 16 bit accuracy. In Fig lu(a) BOC started with almost 110%
crror, and the number of iterations nceded was 21. Fig 10{b) shows the Log of the residue
as a function of the number of iterations. The fluctuations depicted by Figs. 10(a) and (b)

is due to the rejection method used in the experiments.

4.1 Effect of Calibration

The aralog optical system error is a major factor in the rate of convergence of the
BOC. If that error is reduced, then the convergence is much faster. In order to illustrate
this, the same problem has been solved twice with two different accuracies of the optical
system. The analog optical system’s error in the first time was 50%, and it was 30% in the
second time. Twenty one iterations were needed by BOC to converge to the 16 bit accuracy
for the first case. For the second case the number of iterations was reduced to 12, These

results are plotted in Fig 11.

4.2 Reliability of the System

System reliability for convergence have been tested and verified by sclving the same
problem several times, under different conditions. Results show that when the BOC is
used, to solve a problem several times, the convergence rate will not be exactly the same
for all the cases. However, the number of iterations needed by the BOC to converge to a
certain accuracy is almost the same. Fig 12 shows three different paths of convergence for
the same problem. The BOC necded 13 iterations in the first run, 14 iterations in the

second, and 11 in the third.

4.3 Convergence of the Singular Matrix
Solving a system of lincar equations with a singular matrix A\ is one of the problems
that cannot be solved using conventional digital computer techniques.  Singular matrices

have a condition number that is equal to infinity, so their inverse does not exist. also they
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have infinite solutions. llowever, the BOC can be used to solve such systems [9]. The
BOC converges much faster when A is singular, because a nonsingular matrix will have a
unique solution. Due to the infinite solutions that a singular matrix has, the BOC

produces different solution each time we trv to solve the same problem again. [ig 13 shows

the BOC convergence for a singular matrix.

V. Using the BOC for Phascd Arrays

It is shown the previous sections that the BOC is capable of large ill—conditioned
lincar systems of equations very rapdily. This makes the BOC a unique system in
processing of phased array data. In this section we show some simulation results using the
BOC for the weight adaptation of a phased array.

Two simulation experiments are presented in this section. In the first experiment
we used a five element array, and assumed the directions of the jammers are known. In the
second experiment a 2 element array is used and no a prior: information is assumed.

In Fig. 14 the 5 element array pattern is plotted as a function of the angle, 3. Fig.
14(a) shows the array pattern before adaptation. In Fig. 14(b) the pattern after adaptation
is shown for a jammer at 45°. The array pattern after adaptation has reformed in such a
way to null the jammer signal. In Fig. 14(c) four jammers are considered at 45°,80°, 120°
and 150°, the array pattern is again reformed to null all the jammers signals reception.

In Fig. 15 the BOC was used to solve the adaptation problem assuming no a priort
information about the interference signals.  Fig. 15(a) shows the two—cicment array
pattern before adaptation. In Fig. 15(b) to (d) the pattern is plotted for a single jammer
placed at 30°, 45° and 60°. respectively. In all these plots the array adapted to cancel the
interference signal in cach of the given cases. In all of the above results the jammer signals
is considered to be of the same strength as the desired signal, and the convergence of the
solution obtained in less than five iterations.  Also the condition number of the Rxx 1S

i
between 107 and «.
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VI.  Conclusions

[ybrid optoclectronic processors were demonstrated to be used for processing the
adaptive phased arravs data. These processors were shown to have the high accuracy of
digital processors while are faster in solving large systems of linear equations. In this
particular application of the bimodal optical computer considered here, 1t has been shown
that the BOC is suitable for the adaptation processes of the weights.  The interference
canceling was achieved even with the presence of the errers in the analog optical processor.
Fxperimental results reported here confirms the theoretical predictions,

For future work the BOC can be implemented to do real time adaptation of the

weights. Also other algorithm adaptation can be considered.
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HYBRID OPTOELECTRONIC
NONLINEAR ALGEBRA PROCESSOR
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ABSTRACT

A novel system for solving svstems of nonlinear equations Is proposed. Two sditferen:
algorithms are introduced A speed analysis of the two diffor ent algorithms 15 presented and
compared with the speed of their digital computer counter parts. A\ great advantace i speed |
shown for laree size problems.

I. INTRODUCTION

Systems of nonlinear equations arise in the process of solvirig many physical problem: . They
are a verv important class of mathematical problems. Iterative methods are used to solve such.
problerns.

In this paper we propose a new method for solving this class of nonlinear problems u-ing
optical processors. In Section 2 the iterative methods used in solving nonlmedr svstem:s !
equation is reviewed. In Section 3 the optical implementation is proposed using two difivrent
algorithms. The speed analvsis of the two algorithms is given in Section 4. In Section 5
conciusions and final remarks are drawn.

2. NEWTON's METHOD

Systems of linear equations are given as follows

A;(‘:B B

[
w b

- - - .
where A is an n = n matrix. x and b are n x 1 vectors. In these systems A and b are eivonan
the solution of the system 15 unknown.

Nonlinear svstems of equations can be represented by

f(2) =0 g
or
W]
L0y n,)
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.
where fi's are nonlinear functions of x

e . . . -
One of the methods used in solving for x in the nonlinear system of equations is Newton's
method. For a single nonlinear equation. an initial solution, xo, of the equation is assumed, and

the (k+1)th iteration of the solution is given by (1

1
g1 =%~ )

where

,_of
f=f(x,) , and f; = 95{x)

For a svstem of nonlinear equations, Eq. (3) can be rewritten as

x=xk

_ 1
RS TELC R

where

J). . = _&__afi(i)

lv] j !
and J is the Jacobian matrix.
et
-1

G h=2,

Ler:

(3)

(8)

Fa. (%) is a svstem of linear equations to be solved for €, which is the correction r}eeded' for the
(k+1)th solution iteration. The algorithm for solving the system of nonlinear equations will be as

follows:
b Assume a solution .
i) Compute the nx1 vector h and the nxn matrix Ji
i Solve the linear system of equations Jy8x = h for &,
v Compute the refined solution Ry = #x — &

V) Check if the norm Ilh.l— fkll < ¢ stop, otherwise go back to step (ii). ¢ is the

allowable error.

3. OPTICAL IMPLEMENTATION

The iterative algorithm introduced in Section 2 requires 0(n3) number of operations when
used with conventionai digital computer. The most expensive part of the algorithm is step (ii1)
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to solve a system of linear
equations. In  previous
publicationst2-4: we  have

proposed and analvzed a hvbrid R v

optoelectronic processor. the Y /

Bimodal Optical Computer \ / /
BOC., capable of solving linear

systems of equations accurately a4
and rapidly. In this section we <
modify that system to be used
to solve systems of nonlinear
equations as shown in Fig. 1.
We propose two different - f D
algorithms. the first utilizes the NS

use of the analog processor to L

+

solve the system of equations \
(8) approximately. and the /0 DIOTAL |t /s {——
second to use the BOC to solve PROCESSOR

the system of equations (8)

exactly (within the specified  pjp 1 Block diagram of the hybrid optoelectronic system.
accuracy).

3.1 Hybrid Analog Optical Processor

In this system we use the optical analog processor to solve Eq. (8) approximately. For this
system we introduce the following algorithm:

a)  Use the digital processor to guess an initial solution Xo.

b)  Use the digital processor to compute both the vector h and the matrix Jy.

: . . 0 40 o 0 gl
c) Use the optical analog processor to solve the system Ji & = h for €. approximately,
where the superscript o's denote inaccuracies in optics or electronics.

di U'se the digital processor to read 2% and compute the refined solution Ry, = %4 - 20,
e) Check if the norm ”h.l - ml < ¢ stop, otherwise. go back to step (b} and recvcie.

3.2 Hybrid BOC Processor

In this system the BOC is used to soive Eq.(8) exactly. For this syvstem we introduce the
following algorithm:

a)  Use the digital processor 1o guess an initial solution x,.
by Use the digital processor to compute both ?k and the matrix Jk‘

-+ -+
c) Use the BOC to solve the svstem Jg ¢k = h‘ exactly for cy.
d) Use the digital processor to read & and compute the refined soluticn %y, = Xy — &
e}  Check if the norm ||?k.1 - ?kll < ¢ stop, otherwise, go back to step (b and recvcle.
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4. SPEED ANALYSIS

The toliowing speed analysis is based on a system of linear equations with size. n.
4.1 Digital Processor
The total time required, TDT’ to solve the system of nonlinear equations using &

conventional digital processor 1s given by
n3

where
'I‘D1 = the time needed to do one digital operation (e.g., a multiplication).

and
ND = the number of iterations needed for the solution convergence.

4.2 Hybrid Analog Optical Processor
The total time required. TOA to solve the system of nonlinear equations using the processor

mntroduced in Section 3.1 is given by

ToA™ [n(n+2)TDl + TAI] Ny (10).

Whiere
Ty - the " required for ihe optical analog processor to solve the system of linear
~quations (8) approximately,
and
NA - the number of iterations required for the solution convergence.

13 Hybrid BOC Processor

The total time required, TOB’ to solve the system of nonlinear equations using the processor
ntroduced 1 Soction 3.2 is given by
Top = [20(0+1)T, + Ty [ IgNpy (11

where
= the number of iteration needed for the BOC to solve Eq. {8) to the specified accuracy

'y
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4.4 Speed Advantage

It is of great interest to determine what is the break even point for the optical processor
proposed 10 be faster than the digital processors. This condition is defined by

and
IDT’TOB . (13)

From Egs. (9} to (11) the conditions (12) and (13) can be written as

2 T
n“{n/3+1 ] ( D1
x > 1 (14)
e Mo
or
Anx At >1 {15}
for the hybrid analog processor. where
IA:NA/ND. (16:

And for the hvbrid BOC processor

( n3/3—2n(n+1)(18—1) ) . (TDI

)1 Vi)
‘B Tay
or
B x At)l (%)
Where
2
17 (n/3+1 o)
N "
3, _
n°/3 ~ 2n(n+1)(Iz-1) ;
B = . JO',
n 1
and
A :;D—l. 21
o ta

The number of iterations. 1, and Iy, usually are in the range of 1 to 10 1 T riuns, Ag and By
4

are problem dependent. and are much larger than | for large values of n. On xk?e other nand. ‘f\t
depends on the speed of the analog processor for solving a system of Enear cquation. vaicn fai be
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in the ranve of wsec. But since the matrix Ji need to be updated every cycle. writing the matr.-
Jy on the SLM becomes the bottleneck of the processor speed. With todays technology writing
mmaurix on an SLM may take a few milliseconds. So At is much less than 1. In g, 204y and b
the Loz (Aq) and Log (By) are plotted in terms of the system size. n, respectively. The ratio Ag 3
I for n ~ 10, while Ag > 1 for n ¥ 60 and 120. for ]B = 10 and 20 respectively. For the Ay ratio in
ine range of 1073, we can have a speed advantage for the hybrid analog optical processor for n >
50. and for the hybrid BOC processor for n > 120.
r
rTf ] ]

(R

s 4

s

LOX(A )

[ v v g

MATRIX
MATIX SER » i s

Fig.2 Plot of log of the ratio (a) An of Eq.(19). and
(b) Bn of Eq.(20), in terms of the size of the matrix .n.

Again this ratio Ay depends mainly on how fast we can write a matrix on the SLM. By the
2 roduction of faster SLM's the speed advantage can be gained for smaller values of n.

5. CONCLUSIONS

©wo new hybrid opto electronic processors are introduced for solving systems of nonlinear
equatic~  The speed of the two processors is analyzed and compared with the speed of digital
srocessors 1t is shown that the main factor of the speed limitation is the speed the SLM's used to
write the martrix on. With the existing SLM's a speed advantage can be gained for n>100.
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ABSTRACT

‘ Hardware and software design of the Bimodal Optical Computer (BOC) and s
implementations are presented. Experimental results of the BOC for solving a system of linear
equations Ax = b is reported. The effect of calibration, the convergence reliability of the BOC,
and the convergence of problems with singular matrices are studied.

1.INTRODUCTION

Analog optical systems are becoming very attractive in the area of signal processing . ruse
of their ability to process in parallel two dimensional data very rapidly. However. analog ~piici
systems have low accuracy. BOC él—‘i] solves this low accuracy problem, by using a comhuation
of both analog optical system and digital processor.

In this paper we present experimental results using BOC for solving systermi: of lineas
equations. In Section 2 a comparison between astigmatic optics and waveguides haed aleebra
processors is presented. The hardware and the software design of BOC is in Section 3. Section 4
contains the experimental results of the BOC for solving a system of linear equations. The
conclusions are in Section 3.

2.ASTIGMATIC OPTICS AND WAVEGUIDES BASED ALGEBRA PROCESSORS

The analog optical system can be applied in many applications. This paper concen rates on

solving a system of linear equations. Goodman (5] has introduced an astigmatic Drocessor to
perform matrix vector multiplications, which can also be used in a systen: of linear equauions
solver. However, the main problem that faces the arrangement in Fig. I is aligning the

components, to insure a uniform light distribution along the matrix plane.

Waveguides can be used to build optical algebra processors. By using waveguides. the
optical system can be made compact, and its alignment will be much easier than that of the
astigmatic svstem. The distribution of the light across the waveguide is plotted in Fig. 2. whick
shows that the light is almost uniform along the waveguide. From the practical standpoint
waveguides are more reliable to use in these systems than the astigmatic optico.
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3. THE BOC DESIGN (HARDWARE AND SOFTWARE)

3.1 BOC HARDWARE DESIGN

The BOC hardware has three main parts as shown in Fig. 3. The optical syvstem. the
electronic circuit, and the digital processor. The optical system consists of the fullv parallel
matrix-vector multiplier. Light from the LED's representing the x components are spreac
vertically by planner waveguides onto the columns of the matrix mask. The transmitted light is

summed row wise by using another set of planner waveguides and detected by photodiodes which
represent the cutput vector b.

The electronic circuit acts as a feedback loop to correct for the input light of the LED's.
until a solutinn is reached. The solution x will then be read and stored by the digital processor.
Fig. 4 shows the electronic circuit used for the feedback loop.

he A/D and D/A conversion from and to the electronic circuit are performed by the digital
DIOCESSOT.

3.2 BOC SOr TWARE DESIGN

The BOC software controls the Input/Output operations. Both the matrix A and the outpu!
vector b are read and stored by the digital processor. The vector b is then converted to analog
voltage by a D/A converter, and it is assigned to the different ports of the electronic circuit. The
analog optical processor solves for an approximate solution due to its inaccuracy. The digital
processor reads and stores the approximate solution, x° through the A/D converter, then it
calculates the residue vector, 1, as,

1=b-Ax’=A(x-x°)=AAx (1)

Multiply Eq. (1) by a scalar 8 to make use of the whole dynamic range of the system. so
Eg (1) becomes,

sr=A(8Ax) (2)

I{ the residue is not small enough, the system of linear Eq.(2) will be solved for Ax using the
analog optical processor and.,

x =x0+Ax ()

A new residue wiil be found for x!. The iteration process is continued by solving Egs.(1)
through (3, until a satisfactory solution is reached.

4.EXPERIMENTAL RESULTS

In this section we present the experimental results for solving a system of linear equations
Ax=b us:ng the POC,where A/b, and x are all positive.

The Log of the error and that of the residue are plotted versus the number of iterations. The
error and the residue are defined as,

Error= {(x—x")||/ I/l "
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n

Residue-—-llgkll (5)
Where ||.||, is the Enclidean norm, x is the exact solution, xk is the ktb iteration solution.
and rkis the kth jteration residue.

Since we are dealing only with positive numbers in this paper, we used the absolute value of
r to solve Eq.(2), then we set:

(n+1)=¥(n)+A)_( (6)

X
when all the components of r are positive. And

LADENORY (7)
if all the components of r are negative. We reject the iteration when the components of r have
different signs and take the previous one. By rejecting some iterations we are actually rejecting
some co.rections. This procedure slows down the convergence process.

In all the experiments performed, the iteration process is stopped when a 16 bit accuracy is
reached. Fig. 5 shows that the BOC started with almost 30% error and it needed 6 iterations to
converge to 16 bit accuracy. In Fig. 6(a) BOC started with almost 110% error, and the number of
iterations needed was 21. Fig. 6(b) shows the Log of the residue as a function of the number of
iterations. The fluctuations depicted by Figs. 6(a) and (b) is due to the rejection method used in
the experiments.

4.1 EFFECT OF CALIBRATION

The analog optical system error is a major factor in the rate of convergence of the BOC. If
that error is reduced, then the convergence is much faster. In order to illustrate this. the same
problem has been solved twice with two different accuracies of the optical system. The analog
optical system's error in the first time was 50%, and it was 30% in the second time. Twer v one
iterations were needed by BOC to converge to the 16 bit accuracy for the first casc. For the
second case the number of iterations was reduced to 12. These results are plotted in Fig. .

4.2 RELIABILITY OF THE SYSTEM

System reliability for convergence have been tested and verified by solving the same problem
several times. under different conditions. Results show that when the BOC is used. ‘o solve a
problem several times, the convergence rate will not be exactly the same for all the cases.
However. the number of iterations needed by the BOC to converge to a certain accuracy is almest
the same. Fig. 8 shows three different paths of convergence for the same probiem. Th2 BOC
needed 13 iterations in the first run, 14 iterations in the second, and 11 in the third.

4.3 SOLUTION CONVERGENCE FOR THE STNGULAR MATRIX SYSTEM

Solving a system of linear equations with a singular matrix A is one ¢f the problems that
cannot be solved using conventional digital computer techniques. Singular matrices have a
condition number equal to infinity, so their inverse does not exist. also they have infinite number

of solutions. However, the BOC can be used to solve such systems {6}. The BOC converges much
faster when A is singular. because a  nomsingular  matrix  will  have a
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unique solution. Due to the infinite:solutions that a singular matrix has. the BOC produces
different solution each time we try to solve the same problem again. Fig. 9 shows the BOC
convergence for a singular matrix.

5.CONCLUSIONS

The BOC system was built and experin.entally tested. The experimental results show great
reliability of the processor in solving systems of linear equations. Overall 16 bit accuracy of the
hybrid system was achieved with an analog optical system of 30% to 50% error. Higher accuracies
of the solution can be obtained by increasing the number of iterations. The BOC also
demonstrated to solve systems of linear equations with singular matrices. '

We are considering in future work, bipolar numbers, complex numbers, and using SLM for
the matrix mask.
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Fig 5. The Log(error) as a function of

the number of iterations. The BOC started
with 30% error.
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Fig 6(b). The Log(residue) as a function of

the number of iterations.

Fig 8. The Log(error) as a function of the

pumber of iterations for the same problem
done three different times.
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SOLVING ILL-POSED ALGEBRA PROBLEMS
USING THE BIMODAL OPTICAL COMPUTER

Mustafa A. G. Abushagur
Electrical and Computer Engineering Department

H. John Caulfield
Center for Applied Optics
University of Alabama in Huntsville
Huntsville, Alabama 35899

A set of ill-posed algebra problems are considered for solvine by the Bimoedal Ouniva
Computer. BOC. The BOC aleorithm was shown to be capable of \ol\mﬂ dhis class o aleebra
nroblems.  Three different methods of generating the error matrix are comparcd it terms o) ¢
convergence of the solution. Some applications for the methods are introduced.

1. INTRODUCTION

Optical linear aleebra processors 1"t are introduced to provide a fast and reliable 1.0
solving linear algebra problems. We have shown in previous publications'? t‘nak she DO
capable of solving svstems of linear equations with singular matrices. The BCC algoritir. .
we have mtrodu(pd can also be used on conventional dxgnal computers. In this paper we joeso
thiree different methods in generating the error matrix used in the algorithm. A coibar -
between the different methods is shown in terms of the solution convergence.

In Section 2 we review the BOC algorithm for solving a system of linear countions
Dxflercm schemes in generating the error matrix is given in Section 3. Application ol ©.0 e
to semilinear probiems is shown in Section 4. In Section 5 conclustons and final remuaris oo g

2. THE BOC ALGORITHM

In this section we review the BOC alegorithm to solve a svstem of linear eaquanions 1o
aleorithm originaily was developed for the Bimodal Optical Computer. BOC . w hrdoooa .:\’:):
svstem. combining both analog optics and digital electronics to achieve accurare ot vens
rapidly for svstems of linear equations. The aicorithm can also be used on a dicita, comniiel

solve systems with very iil—conditioned or singular matrices,
The probiem we are interested to solve is the basic svstem of linear equatio,

»

/\XZ—’B. v

where A IS E0Nx DoMmatniy. % and b are n x 1 vectors. A and b oare ar kpown and X sl
solution of the svstem we need to determme. The matrix A can be eitner an ni—cowhiioned o
~ineular.

The BOC aleorithm s as follows:

o
5]
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(ai  Generate the matrix A®. which is given by

A°=A+E. (2)
where I3 s the error matrix.
€11 * " €1q
E=1{¢1 €al, 3
€a1 " €on

and 18 generated using a Gaussian random number generator. with zero mean and standard
deviation, Ig-

{bY  Solve the svstem

A%C =b (4)
for x°
¢} Compute the residue
t=b-Ax = A Ax (5)
td)  Solve the system
er = A¢ SA;(O (6)
f_\i“. whore 8 4s a constant used to utilize the dynamic range of the system. such that
sirll_=1. (7)
e Compute the refined solution
x' =%+ Ax° (8}

i 1l r | < e the allowable error. stop. otherwise, go to step (c¢) and reiterate.

I this algorithm the matrix Ao is a well conditioned matrix4'. If A is a singular matrix
tiien 1t has at least one of its eigenvalues is equal to zero. By adding the error matrix E to A then
‘e vr1o etzenvaiues of A will be shifted and the matnx Ae will have no zero eigenvalues. [t is
¢ worth mentioning here that step (a) is not necessarv when using an analog optical processor.

Lecanse jts done naturally,

3. GENERATING THE ERROR MATRIX

fnothis section wentpoduce other wavs of generating the error matrix. E. given i Eq. 12
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Also we will compare these different methods in terms of the solution convergence of svstem ¢f
linear cquations with a singular matrix.

The error matrix. E. can be generated as given by Eq. (3). Also some of the other means it
can be generated are

((11 0
[‘,I = "€
L0 .(nn 'i‘
\,)I'
[ € 0
E, = ¢
= 10 ¢ (10
or
1 0 0 [
L, = 1 + C, = 0 . (11
3 0 1 2 1 0 '

[n Eq. {9) the diagonal matrix is generated using Gaussian statistics.
[n Fig. 1 the number of iterations required for a 16 bit solution of a 5 x 3 singular svstem 1

plotted in terms of the logarithm of the standard deviation. og. of matrix E and E; or the

;u{:aritbm of'c of matrix Eo. In Fig. 1(a) a 5 x 5 matrix with rank = 4 is used. while in Fig. 1L
the rank of the matrix is only 1.
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Fig.1 Number of iterations required for 16 bit resolution is plotted
in terms of the logarithm of gp OF ¢ for a 5x’ matrix wirh

(asrank=4. and (b) rank=1.

[n Fig. Ira) the number of iterations using E and E; i= 5 for an ernumner of iteration starts
roancrease. While the number of iterations using Eq is only 4 for an error. ¢, up to 107, For rans
matnix, Fieo 1(h). the number of iterations is 3 or 4 for an error uyp o 17, \When the erros
reaches 1009 the number of iterations is between 15 and 25, with the wethod uzing By has the
Lest performance.

SPIE Vol 933 Hybrid image and Signal Processing (1988« 31

44




In Fiz. 2 the number of iterations required for a 16 bit resolution solution is piotte? » terms
1 Log(Cy/Ca). tor two values of Cy. The number of iterations is 5 up to an error of 10007.
exeept o divereence at Gy = Co. which
ahe the error matrix weelf singular.

”» v+~ \ 1
From the results shown in Figs. 1 " ] [

and 20 the different means of generating na |
TLeerTor matrix are quite similar in terms ol } !
of the converzence rate. It is clear that ] o t

svoof the apove methods ix capable of £ - \
coving tins class of problems. Using an b

Otical processor witl limit us to use E for § v J

‘aeerror matiix. When the matrix (A s ! $<

viitten nothe analog processor because of T l
hie inherent inaccuracies of the processor . t
Ao will be recorded instead of A But ;L . 4
when using this algorithm on a digital e
computer. we are not himited to any one LOG(Cy/Ca)

t

of the anove methods. In this case using

i e sencrsins e error nates Wl g Nyoer of nerations eauired for 16 b

sednre the et nim perations. resolution in terms of Log(Ci/Ca) for a
5x5 matrix with rank=4.

4. SEMILINEAR PROBLEMS

This class of problems has a very wide range of applications: such as optimization problems.

Ciiear progranunive. image restoration, etc. In semilinear problems the system of linear equation
venon Eqo i1 need to be solved for & with the following constraints
x.1>0 ,1=1,---n (12}
@il
bi >0 . (13)

Usuily, the system of lincar equations considered in the semilinear problems is overdetermired.
underdietermined or with matrix A singular. In all these cases the system does not have a unique
solutr i So in the iterative BOC algorithm any solution that does not satisfv Eq. (12) will be
ieplaceyd zero, until the svstem converges to a satisfactory solution.

5. CONCLUSIONS

Iie BOC aizorithm is introduced and applied to solve a set of ill-posed algebra problems.
The converzence of the solution was studied for the different methods used to generate the error
niacti The algorithm can be used both optical and digital computers.
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ABSTRACT

The Bimodal Optical Computer (BOC) is considered for Adaptive Phased Array Radar (APAR) data processing. The
effect of the errors in the BOC on the optimum weight calculations for the interference canceling are studied. Computer
simulations for five and ninc clement APARs are presented.

I. INTRODUCTION

The adaptive phased array radar systems provide the means for suppressing unwanted
interference signals. This is achieved by nulling the antenna pattern at the direction of the
jammers.[1-5] Many algorithms are introduced for the adaptation process and these are reviewed
by Monzingo and Miller.(2] These algorithms have large computational complexity. This makes
the adaptation process slow, especially for large size arrays.

We have introduced the Eimodal optical computer {BOC) for sciving unear algebra
vroblems.[6-7] BOC is capable of solving this class of problems with both high speed and accuracy.
As an optical hybrid system, the BOC combines between the speed and parallelism of optical
analog processors and the accuracy of the digital electronics. In previous paper we have suggested
:he implementation of the BOC for processing of the APAR’s data.[8]

In this paper we study the effect of the errors involved with the BOC components on the
interference canceling abili% of the APAR. Also a comparison between the antenna pattern for an
APAR computed using the BOC with and without optical errors is presented.

1.1 Adaptive Phased Array Radar

The adaptive phased array radar system (APAR) block diagram is shown in Fig.1. The received
signai vec:or X is given by

X = X4 + Xj +Xp, (1)

where xy = the desired signal,

x: = the interference signal, and

xn = the thermal noise.

The received signal x;'s are then multiplied by the corresponding weights w;’s, and summed to give
the output signal s(t). The output signal is then compared with the reference signal r(t) to give the
crror signal « (t).

e(t) = r(t)-wl x, (2)

where T denotes the transpose of the vector.
The adaptation problem for the weights can be formulated in such a way that the least mean

Presented at the 3274 SPIE Annual Symposium, San Diego, CA August 14-19,1988, SPIE Proceedings 975-30.
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square cIrror
E{e2(1)} = E{[r(v)- wT x]2} (3)

is minimized, where E{ . } is the ensemble average. In the static case the least mean square error
(LMS) can be set to zero. This can be achieved by solving the system of linear equations given by

(2],
Ryw=ry . 4)

Where Ry, = E{x xT }, and ryd = E{xqr }. So the problem for computing the optimum weights
w is reduced to the solution of a system of linear equations given by Eq. (4). The covariance matrix
Ry is symmetrical and usuaily either singular or ill-conditioned. Solving such system of equations
with limited accuracy processor will require a very large number of iterations, which in turn
increases the computational time.

1.2 The Bimodal Optical Computer

In this subsection we review briefly the BOC algorithm which is used to solve the adaptation
roblem given by Eq.(4). Let A =Ry, x=w, and b=r, 4. Substituting in Eq.(4) will reduce it to the
ollowing

AXx =b. (5)

Which the standard format for a system of linear equations. The BOC block diagram is shown in
Fig.2. It is an optical-hybrid system. The optical analog processor is used in solving the system of
linear equations of Eq.(5) and a digital processor to refine the accuracy of the solution. The
algorithm used in solving the system of equations is given as follows:

(a) Solve Ax = b using the analog optical processor to get X,.
(b) With a dedicated digital electronics processor, read X, and evaluate the residue

ry = b-Ax0 = AAxO‘

(6)

éc) Normalize r, to use the dynamic range of the system.

d) Solve optica?ly the system of equations

Az = sry, (7)
where

z = s(8xg), (8)
and

s = radix used in normalizing r.

(e) Evaluate electronically

Xl = XO + AXO, (9)
and

rp=b-Ax,. (10)

(f) If || ry |l is small enough stop. Otherwise go back to step (c) and recycle.

There are a number of error sources in the BOC. There are reading and writing errors inx and b
and errors in writing the matrix A. Since the processor is analog, thus inherently it has a low
accuracy which is determined by the dynamic range of all of these optoelecironic devices. These
errors will affect the rate of convergence of the solution, which also depends on the condition

2
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number of the matrix A. In the following section we study the effect of these errors on the
performance of the APAR.

II. COMPUTER SIMULATION RESULTS

We have conducted a set of numerical experiments to simulate the BOC in calculating the
optimum weights for the APAR. The simulation experiments are considered with and without
errors encountered in the BOC. This is done to study the effect of the optical errors in calculating
the weights and the antenna pattern. In the following results we have considered the errors to be
Gaussian distributed with a standard deviation of 1% in the matrix A and the vectors x and b.

2.1 Five Element Array

In the first simulation experiment we considered a five element adapuve phased array antenna.
The antenna elements are spaced by half a wavelength. In all the cases reported the strength of the
desired signal strength is considered to be equal to that of the jammer. in Fig.3 the antenna pattern
of the APAR is plotted in terms of the azimuth angle. The desired signal is at zero degrees. In
Fig.3(a) the antenna pattern is plotted for a five element array with one jammer at 30°. The
pattern was plotted first assuming no errors in the BOC (the continuous curve). The other three
curves are for the BOC with the error specified above for 1 iteration (dashed line), 2 iterations (*)
and § iterations (x). The antenna pattern nulls at 30°. which is the iammer direction. The pattern
calcuiated witn only one iteration nulls also at the 30° but not as deep as the exact one. but the 2
and S iterations patterns null as deep as the no error curve. In Fig.3(b) the same APAR is
considered with a thermal noise of standard deviation equal to 0.1 of the desired signal strength.
The continuous curve represents the pattern obtained by the BOC with optical errors, while the
dashed line is the BOC with the errors mentioned above. The two patterns are very close except
that the dashed one is not as deep as the contipuous one, with one or two extra iterations we can
expect the same null. Figs.3(c) and (d) the APAR is considered with 2 jammers at 30° and 50°.
Again the patterns in Fig.3(c) is without thermal noise, the n'lls are very deep and similar with no
2rrors or with a practical BOC with few iterations. In Fig3(u) thermal noise is again considered.

2.2 Nine Element Array

In tius set of simulation experiments we consider 9 element APAR with a number of jammers
with equal strengths to that of the desired signal which is at 0°. In Fig.4(a) a jammer at 50° is
considered and no thermal noise. The pattern is plotted using the BOC with no errors and the
BOC wiih errors for one, and three iterations. From the pattern it is clear that the pattern plotted
using three iterations has a null as deep as that of the system with no errors. In Fig.4(b) a therme]
noise of standard deviation equal to 0.1 of the desired signal strength is considered with a jammer
again at 50°. The antenna pattern obtained using the BOC with no errors and with errors and one
iteration are both nulling the jammer with aimost the same depth. In Fig.4(c) five jammers are
constdered at 10°, 20°, 30°, 40°, and 50°, and thermal with strength equal to that of the desired
signal. Again the pattern and the depth of the nulls are very similar for BOC with no errors or with
errors after few iterations.

1. CONCLUSIONS

The bimodal optical computer because of its hybrid nature is superior in specd to that of the
digital computer in solving a system of linear equations, especially for large size systems.[6] It is
shown here that the BOC is capable of determining the optimum weights for an APAR in few

3
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iterations even when their exists large inaccuracies in the .Oﬁtoelectronic devices used. Since only a
very small of number iterations are needed then the weights can be updated very fast which is a
must for such system.
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ABSTRACT

The use of the dimouat opucar computer (BOC) 1n aeiermimng ine
weighis 107 an adapnive pnased arrav ragur is introduced. Interierence
canceiing is presented (or rwo cases. (/1 assuming the direction of ine
jummer 15 Kknown dnd () assuming no @ priort iniormation. The effect of
the 1ammers on ine arrav patlern is Shown for up (0 four [ammers.

1. INTRODUCTION

The sensiuvitv of a signai-receiving antenna array svstem to
interfening noise sources can be reduced bv switable processing
of the outputs of the individual arrav eiements. The processing
of the output of the arrav svstem acts as an adapuve filtenng
svstem (1-4]. The adapuve phase arrav radar svstems provide
tne means of suppressing unwanted interference signals. This
ts achieved bv nulling the array pattern in the direcuon of
the jammers. Manv algonthms bave been introduced for the
adaptauon process and thev are reviewed bv Monzingo and
Miller {2}

In thus paper we present a new techmque for determumng
the weights for the adapuve arrav using the bumodal opucal
computer (BOC) {5-7]. The bimodal opucal computer 1s capa-
ble of solving svsiems of hnear equation very rapidiv with
tugh accuracy. In the adaptauon process we reduce the prob-
lemn 1o a svstem of hinear equauons. which 10 turn 15 soived
using the BOC.

In Secuon 2 we review the basic theorv of adapuve phased
arrav radars. The bimodal opucal computer algonthm for
soiving tne adaptauon problem 1s presented in Secuon 3
Computer simulaton resuits are given 1 Secuon 4. Conclu-
sions and final remarks are given 1 Section 3

2. ADAPTIVE PHASED ARRAYS

in adaptive phased arrav radars the incomung signal 1s de-
tected by an arrav of sensors. The detected signai 15 a combs-
nauon of the target signal plus interference and noise signals
The svstem 1s adjusted tn such a wav 10 suppress the inter-
ference siznai reception without affecung the desired signal

In tus section we consider the two general cases of inter-
ference canceung: (1) by assumng that the interference signal
direcuon iz known and (2) bv assurmung no a pnon forma-
ton s known about the interference sigoal

2.1 Interterence Signal Direction 1s AKnown. When the inter-
ference siznal direcuon 15 known the weights w of the arrav
can te cnosen 1o suppress the interference signal. Let the
svstem snown in Figure lia) be used to demonstrate thic
adaptauon techruque. The output signal of the arrrav s(r) s
given by i1}

SO = Pl o« w st = (me s wy ISt = # = 2= ]
chiw et =) s wesniw s H -ty
. Y
Sassilwd = 8) - w aniwd - 8- ‘_"l!. (1
236 MMCROWAVE AN OPTCL . TEC-NDLTSY LETTESS v
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woere

P = the pilot siznal.
i/ = (he intererence signal
f = the poase smift, (2

lma
= —gne
A

To cancel the interierence signal ang 10 make the signai
st1) equal to the pliot signai. we need to soive the foliowing
svstem of Lnear equauons for the weights «

" oW o= l
Weor w0
iw. *w. 1cosd — (w. = w jsinf =y

(w: + wjcosf + (w. —wpund =0

The size of thus svstem of Lnear equations depends on the
number of sensors in the arrav The numoer of 1ammers can
make the svstem under or overdeterrmuned. both of whuen are
ume consuming aigebra probiems

2.2 No A4 Prion Intormation 1s Anown. This 15 the most
generai case where we assume no informauon about 1ammers
The svstem used 1n thus case is shown 1n Figure 1ib). Each of
the n sensors receives a signal x (/) that 1s in turn mulupbed
bv a vanable weight w  The output signai s(/) 15 compared
with the desired signal d(r) and their difference. the error
signal ¢(1).15 used to determune the vajue of »  The output of
the array 1s ’

L

stey = Y x(1)w (4)
-]
or
SEE) = wix (5)
where
wi ] Cxdo
w o= “‘and x=i v} (6)

% [
For digital sampled data
() = w Xt ) (")
and
€y) =d( ) - sty =diy = wix( ) (8)
The opumum value of the werghts » 15 the one that reduces
€ ;) to zero or at least minmuzes 1t
For A samples of data the opumum weights sauisfv the
[ollowing set of svstems of bnear equations

wix(ll = dil)

R {9
wox{t) = dtt}

w Xt VY = g

ter 7 Seotemper 1952
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Figure 1

The A sets of equalons nave n unknowns. and usualiv
N > n.and are inconsistent and overspecined The opumuza-
uon probiem can pe rewntten as

w . =R 't (101
where

R = E{xn'; (11
and

r,o=E{xd: (12
The mainx K 15 called the covanance matnx. wnere £ ;s

the ensembie average

Many algonthms are 1ntroduced (2] to soive for the weights
1n Eg. (10). Some ot tne poputar algonthms are the least mean
square (LMS) and the direct matnx 1nversion (DM

We wil bnefiv menuon the DM, algonthm since it leads 1o

+

dit)
REFERENCE
SIGNAL

Basic agaptive arrav svsiem with (a) signal and noise @Irections known and (b no a pnon iInformManon assumead

the 1nput data. For pracucai considerauon a smali numbper o

samples 15 detected 10 be usea in detefTining w T he esin
mated vaiue of Eq. (1U) can pe wven o
w= R (13)
where K., s the sample covanance matnx and r . :s the
sampie cross-correjation vecior that are given b
. LS s
R = =  ntrix () 14y
K=
and
t A
T TN dcn (L5

A 18 the number of sampies ine DM aleontnm actermunes

the alzonthm introduced 1n this paper. Equation (1t cannot the inverse of the sambie covanance matnx R and then
he determuned exactlv using a Lguted number Of sampies o! from Lg 13 cvatuates »
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3. THE BIMODAL OPTICAL COMPUTER ALGORITHM

Convergence of either the LMS or the DMI aironwms ae-
pends on a number of factors. the most imponant beng the
conastion number of the matnx R,. If tbe manx R, i
iil-conaitoned or singuiar. 1t cither converges verv siowiv or
the inverse does not exst. respecuvelv. In such cases other
methods mught be used. but thev are iengthiy and ume con-
sumung. so thev are not switable for a svstem where ume 1s a
verv crucial eiement.

We have shown in previous publicauons (6, 7] that the
;imodal opucal computer 1s capable of solving such probiems.,
wnere the svstem of equauions 1s il-conditioned. singuiar,
averspecified. or underspecitied. The BOC 15 a hvbnd svstem
ov nature: see Frgure 2. It uses analog opucs to solve the
vroblem approximatelv but rapidiv and 1t uuizes the digital
eiectronucs to renne the soiution. 1n an 1teratve scneme

The adaptauon problem for the weights w introduced in
Section 2. can pe rewntien in the following torm. from kg

(.2,

R wep . (16}

wiicn can ne wniten as

Ax = b. (1™
where

4 =R

"W

b=1f_
tauaton (16 4 4 svstem of finear eQuauons that can be

~olvea usinz e timodal opucai computer Among the ad
vantages ot using the BOC over tre convenuonat tecnmigues
are soeed. ‘L‘\DCGJ“‘- for IAFRES S12€ Arravsi, convergence Of the
sotution for dithcult problems. and :i-congiioned singuiar
SYAIEMS WRICH IS (he Case 1or most of e Joaptive arrav radar
Drootems
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We review nere the BOC aizontnim n soing the svsiem
Ax = b

1a) Solve Ax = b using the apaiog OpuCA ProCESSOT 1o get
Xn.

(b) With a dedicaied digital electronics processor. read a
and evaiuate e residue

ro=b— dAx.= 4y - 4 = 4L, (18)

(¢) Normalize r. to use the dvnamuc range of the svstem
(d) Solve opucaliv the svstem

42 = sr (19)
where
= stAN ). (20)

and s 15 the radix used :n normaiing r
rer Evaluate etectromcally

No= v - AN (21
and
nro= b~ An (2

(0 If r.is small enough. stop Otherwise. 20 10 (¢) and
recvceie

In the following section we present some of the preqimunan
results from computer simuiauon stuaies o the BOC n
processing agdapuve arrav problems

4. SIMULATION RESULTS

Two SImuiation expernments are presentead :n tnis section in
the nrst expenment we used a nve eiement array and assume

oo T septemper 1Una




Figure 3 Pnased arrav patiern for five elements (a) beiore adaptauon. (b} aaapted for a 1ammer at 45°¢,

80°.120°,

Figure 4
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the direcuons of the jammers were known In the second
expenment a twoO element arrav is used and NO a pnon
informauon 1s assumed

In Figure 3 the nve ciement arrav pattern 1s piotted as a
luncuon of the angie «. Figure 3ta) shows tne array pattern
before adaptauon. In Fieure 3tb) the patiern aiter adaptauon
is shown for a yammer at 45° The array pautern after adapta-
uon has reformed 1n such a wav that 1t pulls the jammer
signai. In Figure 3(c) four jammers are consiaered at 45°, 80°.
120°, and 150°. The array pattern 15 again reiormed to null all
the jammers signai recepuon.

In Figure 4 the BOC was used to soive the adaptauon
problem assuming no a prnion wmformauon about the inter-
ference signals. Figure 4(a) shows the two-element array pat-
tern before adaptauon. In Figure 4(b)-(d) the pattern 1s
plotted for a single jammer placed at 30°, 45°, and 60°.
respectively. In all these piots the arrav adapted to cancel the
wnterference signal in each of the given cases. In all of the
preceding results the jammer signais are considered to be of
the same strength as the desired signal. and the convergence of
the solution obtauned in less than five iterauons. Also the
condiuon numbered of the R, 15 between 10° and cc.

e

5. CONCLUSIONS

The bimodal opucai computer 1s shown in these prehmunary
results to present a powerful mean for soiving adapuve phased
array problems. We are considenng 1o future work larges
arrayv sizes, recerver noise. and verv strong iunterference signais.
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:

MISSION
of

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C*I) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C°I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/marntainability and compatibility.




